 1 Setup

Install QTP (8.2 or 9.0). Add .net add-in. Install QuickTest Plus package which contain more sample scripts and utilities for object repository management.

if QTP 90 and .net add-in 8.2 add-in is used, run QTP90NET82UPGRADE.exe

 2 Design decisions

 2.1 Test parameters vs Data table parameters

(Test-Settings...-Parameters, Data table column)

Because in meaning they overlap with data table parameters, they are not used.

 2.2 Environment vs Data test parameter

(Test-Settings...-Environment, Test-Settings...-Parameters)

Test environment variables are exported/imported from/to XML file, therefore its manual management in file is complicated. Using dynamic operations, code is similar anyway, for environment variables and parameters:

Environment("Env1")=...

DataTable.GetSheet("Action1").GetParameter("Param1")=

Therefore custom parameters saved in tables are used. However built-in environment variables (e.g. TestDir, TestName) could be used.

 2.3 VBS functions vs Actions

Only action code is stored as a text file. Therefore there is no way to generate action list.

Action invocation typed simply as code line doesn't work. Action call should be added using wizard,

because QTP requires hidden data to provide action "visibility".

Invocation of function from associated library can be added by simple code line in script.

 2.4 Virtual objects vs Object runtime properties

It is possible to use virtual objects where QTP can't recognize them. Actually virtual objects are bitmaps inside their (recognized) parent object, therefore recognition depends on windows settings (fonts, color theme, etc). Therefore virtual objects are stored separately on each computer in QTP system folder. On each new computer virtual objects should be "learned" again, thus absolutely breaking portability.

Therefore invocation of object runtime properties, even it requires more development work at start, is more robust and stable at test execution.

 2.5 Logging

QTP use XML file for overview results in tree structure, supplemented with bunch of binary files. If is useful for integration with MI test management environment. However, it is not good format for remote process monitoring (tailing of results file), therefore additional logging in plain tab-delimited file should is added (report_log function). Then log file it be imported in excel and used for report generation.

 2.6 Object repository for Each Action vs Shared

To avoid unnecessary GUI data redundancy, shared repository is common way for testing frameworks.

 2.7 Problems with Full Paths

QTP links to reusable actions are coded with full paths. If test location is changed, then error message appears:

The following action(s) were not found:

'GuiSanityCheck [_Functions]' From: T:\QTP_Tests\Tests_Functions\Action7

...

If call to action is entered as ..\TestName or .\TestName, then reference to action is lost.

If Shared repository path is entered starting with current directory, (i.e. .\) then error message appears

You specified a relative path that was not found for the repository file.

Cannot create a shared object repository with a relative path.

Fortunately, start with parent directory works (i.e. ..\..), then only warning appears:

You specified a relative path for the default shared object repository file.

When working with other tests, the file may not be found.

Are you sure you want to specify this path for the default shared object repository file?

This is also used in Mercury Sample scripts, so should be working.

Path to recovery scenario is also coded with full path, and there is no way to change it.

E.g. Mercury sample scripts are located in fixed path in C:\Program Files\Mercury Interactive\QuickTest Plus\ScriptsAndTests\Flight_Samples.

 2.8 Problem solving

 2.8.1 GUI recognition doesn't work correctly

Check that .Net add-in is loaded in help-About QuickTest Professional .Net should be checked on.

Check that Object identification is set correctly. Go Tools-Object Identification, select .Net Windows Forms. Check that all controls have swfname as lone mandatory property, except for swfWindow, for which mandatory properties are swfname and text.

Run init, or set_obj_id_settings functions, to set identification settings.

 2.8.2 If test execution doesn't work

If test execution suddenly doesn't work, check Test-Record and Run Settings...

Web/Windows Applications should be set to: Record and run test on any open Web browser/Windows-based application.

 2.8.3 For x=.. to x doesn't work if variable is declared in External Library (VBS file)

Use simple assignments ad Do.. loop instead.

 2.9 HowTo

 2.9.1 Debug function in function associated library (Functions.vbs)

Copy function code from Functions.vbs to the Batch test at the start of InvokeFunctions action.

 2.9.2 Invoke test, action

Tests are invoked using QTP Automation Objects:

.. initialize Test object

qtApp.Test.Run , True, rtParams ' Run the test with changed parameters

Action is invoked by following statement,

RunAction ActionName, [IterationMode , IterationRange , Parameters]

But it will not work if it was not added using wizard, because QTP requires hidden data to provide action "visibility". See also 2.3:

To invoke function:

call function (param1, param2)

function param1, param2

res = function (aparam1, param2)

 2.9.3 Log to QTP Test results

report_log status, step_name, step_description

Reporter.ReportEvent 0, "Version is: ", version

 2.9.4 Get value from data table

DataTable.GetSheet("Action1").GetParameter("Version").Value=version

 2.9.5 Use object without GUI file

Here is example # 1 with description object.

set EditDesc = Description.Create()

EditDesc("Name").Value = "userName"

EditDesc("Index").Value = "0"

Browser("Welcome: Mercury").Page("Welcome: Mercury").WebEdit(EditDesc).Set "MyName"

Here is example # 2 with out description object.

Dialog("text:=Login").WinEdit("window id:=3001","attached text:=Agent.*").Set "john"
Dialog("text:=Login").WinEdit("window id:=2000","attached text:=Password:").Set "mercury"
Dialog("text:=Login").WinButton("text:=OK").Click

 2.9.6 RegisterUserFunc

RegisterUserFunc () for custom functions which use .Object property aren't convenient, because as one parameter reference to object is necessary. So, object reference appears twice:

swfwindow("WLSTP").SwfObject("grdPriceInfo").set_cell_value, swfwindow("WLSTP").SwfObject("grdPriceInfo") , 9, 3, "SCHEDULED"

so, more convenient using object reference once:

tbl_set_cell_value swfwindow("WLSTP").SwfObject("grdPriceInfo"), 9, 3, "SCHEDULED"

 3 WinRunner vs QTP

http://www.google.com/trends?q=winrunner%2C+qtp&ctab=0&date=all&geo=all

[image: image1.png]
http://www.asi-test.com/WinRunner_vs_QTP.htm

WR vs QTP

- binary files, test structure even more complicated than for WR

· only one open test at a time

[image: image2.emf]
Action Calls vs Function calls Parameter values for actions aren't shown:

 3.1 QTP GUI file (*.tsr) is binary, WR *.gui file is plain text

No way to edit file outside built-in editor, but editor is weak. Can add GUI elements only using Add objects pointer, GUI elements should exist. OO approach for GUI elements is BS - can't move them under one class (e.g. For Messagebox).

Only using QTP API (should install QuickTest Plus) (http://kb-web.mercury.com/KBA/KBAview.asp?Conceptid=29449&Product=AQT)

BS that can write scripts before application, because GUI elements should be defined before.

· After installation, you have to register the dll manually. It's located (by default) in "C:\Program Files\Mercury Interactive\QuickTest Plus\Sdk\ObjectRepositoryAPI"

 regsvr32 RepositoryUtil.dll

WR allows to decouple object physical description (class path in QTP) from its logical name, thus code is clean and simple. Why for QTP GUI is necessary at all, if anyway for any method object is necessary? In the net all use the same principle – get container object, iterate over their child and look for necessary child by passed name.

