Table of Contents

 1 Introduction
1

 2 General Design Description
2

 3 Setup
4

 4 Test Management
4

 4.1 Quick HowTo
4

 4.2 Condition Column
5

 4.3 Function Column
6

 4.4 Variables Column
6

 4.5 Parameters Column
7

 4.6 Usage of Excel Functions
7

 4.7 Flow Cycles and Branching
8

 5 Test Execution
9

 5.1 Quick HowTo
9

 5.2 Debugging of Test Execution
9

 5.3 Monitoring Test Execution Remotely
10

 5.3.1 Sharing of TestsRoot Folder
10

 5.3.2 Opening Shared TestsRoot Folder
11

 5.3.3 Monitoring of Runlog with Tail for Win32
11

 6 Runlog Report Generation
11

 6.1 To prepare overview
12

 6.2 Installation of Excel Macros
13

 7 Development Guidelines
14

 7.1 Implementation of New Function
14

 7.2 Function naming convention
14

 7.3 Order of parameters, returned values for functions
15

 7.4 Utilities
15

 7.4.1 Object Repository Functions
15

 7.4.2 List of custom functions
15

 7.4.3 Clean up script
15

 7.5 Other Ideas
15

 8 Other Notes
16

 1 Introduction

The proposed testing framework is assumed to be used for functional testing, which, in difference with lower level testing approaches (e.g. unit testing), is highly complicated and with many dependences. The mostly suited areas for such framework is system regression/sanity testing, acceptance testing, etc.

In large enterprises automation of functional testing is complex and difficult because it requires good knowledge of two kinds – programming and testing tool skills, and business domain knowledge. But usually programmers don't have enough business domain knowledge (especially for complex enterprise systems), but business analysts lack experience of programming and automated testing. Therefore framework, which could allow technicians work only with technical testing problems, but business mans only deal with business cases, has a high value.

The proposed framework allows to separate testing automation in two parts, in which one part is purely technically related, but another part is purely related to business. An interface between business expert and technician is an Excel worksheet, which is quite convenient for both parties.

It is proposed that in this framework test automation team consists of complementary people, which consist of:

· business expert(s), who write test scenarios into Excel worksheet and deal with test data management;

· QTP expert(s), who implements Excel sheet instructions into VBS code, debug implemented functions and maintain framework environment.

Another benefit of such separation between test logic and implementation is that business expert can really write test scenarios and prepare data for test environment before test implementation (or even application) is ready. As proprietary technologies usually make some limitations on testing possibilities, all what business expert should know, is that proposed business related functions will be possible to implement.

On the other hand, QTP expert can implement necessary business functions and deal with workarounds, which usually take place in test automation, without worrying how exactly, in which sequence and data these functions will be used.

As framework is very small, portable and test execution is quite simple, prepared test scenarios can run any of them, or even somebody else when application and QTP environment is prepared.

 2 General Design Description

The main requirements which determined design were

· Ability to use data driven testing.

· Ability to manage test execution flow out of QTP using Excel worksheet.

· Test environments should be as much portable as possible.

· Environment should be kept simple through utilizing testing tool possibilities.

There is built-in possibility in QTP to run some action several times with attached data in Excel worksheet. However, the possibilities are quite weak:

· It allows only to manage passed data to the action, which is usable for full set testing, but is not convenient for sanity/regression testing, where usually only few (or even one) case is tested.

· It doesn't allow to fully manage test execution flow as there are no possibilities for conditions and changes of the execution flow.

Therefore built-in possibilities are supplemented with customized functionality, which allows to fully manage test execution flow with arbitrary complexity using Excel worksheet.

This framework, in difference with other data-driven frameworks, actually provides programming environment in Excel worksheet, as it supports all mandatory programming constructs, which are necessary to implement any logical constructs.

In this framework there is only one QTP test called Batch, which, when started, reads instructions from Excel file (InvokeFunctions sheet in Data.xls file) and executes all functions listed there.

Functions are stored in external library (TestsRoot\Tools\Functions.vbs file).

[image: image1]
The main difference in this design from usual (or proposed by Mercury) approach is refusing of reusable actions. QTP actions have several drawbacks to use them in testing framework:

· Action invocation by simply code line doesn't work, because action call should be added using wizard, which adds hidden data to provide action "visibility". Therefore it is not possible to manage action invocation using Excel sheet.

· Link to parent test of invoked action is stored as full path, and it is broken, when testing framework location is changed. So it doesn't allow to change test framework location on disk.

· Actions have complicated file structure with binary files, for action meta data, therefore it is not practically possible to generate list of available actions and their parameters.

· Reordering of action invocation flow is quite cumbersome due to their complicated design.

· Action file structure is quite disk space hungry.

· Due to binary supplement data, action implementation is not backward compatible between different QTP versions.

Therefore in place of reusable actions, public functions (or procedures) in associated library (*.vbs file) are used. It provides following benefits:

· Functions can be invoked by simple code line, thus it allows to store commands in Excel spreadsheet, which can be evaluated in the runtime.

· Functions are stored in plain text *.vbs file, which allow parsing, to create list of available procedures/functions and their parameters automatically.

· Because functions in associated library file are stored as plain text, these functions are more portable between different QTP versions.

Drawback of public functions in associated library is that it is not possible to debug them line by line. Therefore in development stage, functions are developed as part of InvokeFunctions action in Batch test, and then this code is moved to Functions.vbs file.

Because QTP doesn't allow to decouple object (control) physical description (class path) from its logical name (it is not possible to know always how long containment classpath will be), practically there is no way to execute script using only logical names of GUI controls. Therefore execution management for each simple atomic task (entering data in edit field, clicking on button, etc.) in Excel sheet is too complex (actually, it should mimicry QTP code). Therefore each function contain several logically related GUI actions (entering data in text field, selecting combo boxes, clicking on buttons), which is managed by passed parameters.

 3 Setup

As framework is made as portable, as possible, its setup is very straightforward. It consists of two steps – installation of the QTP tool (the hardest part :-)), and extraction of testing framework in some folder:

1. Install QTP 8.2. and .net add-in. Apply updates and hot-fixes. See QuickTest Professional Installation Guide (QT_Install_Guide.pdf) for more details.

2. Unzip QTP_Tests.zip into some folder, further this location will be named as tests TestsRoot folder. For framework example it is recommended to extract it into C:\Temp folder, otherwise change value of url variable in Global sheet accordingly.

 4 Test Management

 4.1 Quick HowTo

Open Data.xls file using Microsoft Excel. QTP doesn't like OpenOffice Calc as it stores file in slightly different format. If file is modified by Calc, and QTP screams, open this file in Excel, modify something to get changes and save it. File content will be restored to the format which QTP likes.

Data.xls file is located in TestsRoot\Data folder, but don't panic, if you have received this file by e-mail. The ability to write test cases will not depend on how the file is gotten.

Open InvokeFunctions worksheet. This sheet is used to manage test execution flow. Edit list of invoked functions, passed parameters, conditions, etc. according to your needs.

The first row of the sheet contains column headings. Column headings are used by QTP to recognize type of passed data. In normal case, this row should not be changed, but if such happened

by error, note that sheet should have Condition, Function,Variables, Parameters and Comments columns.

Usually the first function, which is invoked is start. This function is a handy wrapper for environment initialization (by invoking init function), application startup (app_start) and default logon (logon).

All further content of InvokeFunctions sheet can be arranged according to your needs. Usually this sheet will contain sequence of invoked custom functions with passed parameters.

Using built in QTP, VBS and custom functions, condition statements and branches it is possible to write any arbitrary logic in the sheet. The only limitation is knowledge of custom, QTP and VBS functions, and logical names of GUI controls. In the extreme case, it is even possible to manage GUI control related functions without object repository file (see Use object without GUI file in Notes.doc).

[image: image2.png]
Fig. 1: InvokeFunctions worksheet in Data.xls file

Content of the first four columns in the sheet is used to form command statement, which is evaluated in runtime. The content of these four columns together should form (after processing) valid VBS statement.

All other columns are ignored, but can be used for comments and referenced data. Sheet can contain empty rows. These rows will be ignored. If not all cells in row are empty, row is ignored if cell in Function column is empty.

In following chapters purpose for each column in this sheet is described in details.

 4.2 Condition Column

Condition column is used for the following purposes:

1. If cell value starts with "-" (minus) sign, then row is treated as "commented out" (analog to VBS Rem or ') and function is not executed.

2. If cell value starts with with ":" (colon) sign, then it is treated as row label, which is used for execution cycles and branching (see more in chapter 4.7).

3. Any other non empty value is treated as logical condition, which is checked before function execution.

If the condition is set, then the followed Function will be invoked only if the condition will be true. E.g.:

Condition
Function
Variables

a=1

b=2

b>a
msgbox
b&">"&a

Table 1: Sample with simple condition

Will show following message box:

[image: image3.png]
Fig. 2: Message box with variable comparison

NB! Each row in sheet is evaluated independently, therefore:

1. It is not possible to form then statements in several rows.
E. g. following logical statement:

If a>b then

statement1

statement2

End If

should be formed as repeating statements with the same conditions in each row:

Condition
Function

a>b
statement1

a>b
statement2

Table 2: Group of statements for condition

2. It is not possible to form Else condition. E.g. following logical statement:

If a>b then

statement1

Else

statement2

End If

should be formed as set of independent statements in following way:

Condition
Function

a>b
statement1

Not a>b
statement2

Table 3: Exclusive conditions and statements

Though, these limitations doesn't prohibit creation of any arbitrary logical construction. Only syntax for these constructs should be different (see more in chapter 4.7).

Note. The main reason why Condition statement have its own column is due to VBS syntax. In VBS, x=y can be interpreted two ways as test or assignment. Statement in Condition cell is evaluated using Eval method, which interprets x=y as an expression that tests if x and y have the same value.

 4.3 Function Column

Function column is used to define name of invoked functions. Any custom function, built-in QTP or VBS function can be invoked. See Functions sheet for available custom functions.

The most common VBS functions which could be used there are: msgbox and wait, useful (for debugging purposes) QTP function is exitrun. See QuickTest Proffesional Help and VBS reference for other functions.

Note. Statement concatenated from Function, Variables and Parameters cells is evaluated using Execute method, which interprets x=y as an assignment statement, where the value of y is assigned to x.

 4.4 Variables Column

Variables column is used to pass data for invoked functions using named variables. E.g.:

Function
Variables

a="a"

msgbox
a

Table 4: Implicit variable declaration using assignment and its usage

Explicit variable declaration (i.e. Dim a), is not necessary. Variable visibility is global to QTP runtime environment, and its value is remembered until stop of test execution.

If function needs several parameters, then all variables are written in the same cell, and they are split with "," (comma) sign.

Values for variables are set using assignment statement in Function column, (e.g. a="a"), or using custom functions (usually they name starts with get_), which assign values for passed variables (variable is passed as reference to this function, i.e. in function definition variable is leaded with ByRef keyword).

See Functions sheet for list of custom functions.

 4.5 Parameters Column

Parameters column is used to pass data by by explicit values. According to the VBS syntax, String/Date values should be wrapped into double quotes, but Numeric/Boolean values don't. To not bore with double quotes, Parameters column is introduced, for which values are parsed and formatted before function invocation. Double quotes are still allowed, where they seems more convenient, e.g. for empty values. So all following statements are correct:

Function
Parameters

msgbox
"a"

msgbox
1

msgbox
"1"

msgbox
a

msgbox
""

Table 5: Ways of parameter value formats

It is possible to pass data to invoked function using both – named variables in Variables column and explicit values in Parameters columns. Of course, it is possible to do only if variables are used before values. If it is necessary to do otherwise, new variable should be initialized to catch up all parameter values before, and then function is invoked only using variables, e.g.:

Function
Variables
Parameters
Comments

search
var1,var2,,,,
val1,val2,,,,,
If order of function parameters allow it, data can be passed to function using both – variables and parameters.

values=

val1,val2
If order doesn't allow it, set parameter values into new variable

search
,,,,,values,,,,,var1

Use this new variable with set values for function invocation

Table 6: Workaround for passing values before variables

 4.6 Usage of Excel Functions

Any valid Excel function can be used to pass data for invoked functions in InvokeFunctions worksheet. Value returned from Excel function is used for invoked function. In other words, value how it is seen on screen is used for invoked function. This can be handy in many cases:

1. For initialized variables parameters or labels, it is very convenient to use Excel Excel reference to them. Then it can be simply changed in one common place (e.g. row can be commented out with "-"), and all other places will be updated automatically. E.g. variable cuser in declared in cell C2, but in other it can be referenced using Excel reference =C2:

[image: image4.emf]
Fig. 3: Usage of Excel reference to another cell

2. Value can be can be set by built-in Excel function, e.g. Date function used to set run_label:

[image: image5.emf]
Fig. 4: Usage of Excel built-in functions

3. Values can be concatenated from (referenced) worksheets, e.g. to search different Deals:

[image: image6.emf]
Fig. 5: Usage of referenced cells

 4.7 Flow Cycles and Branching

To be able to implement any arbitrary logic (be Turing complete in technical speaking), having only logical conditions is not enough. To allow cycles, branches and iterations, there should be possibility to change execution flow forward or backward. This is done using labels in Condition column and golabel function. golabel function changes the test execution flow by searching passed label in the Condition column. The following example shows simple iterator, implemented with labels and golabel function:

Condition
Function
Variables
Parameters

:Label1
a=a+1

msgbox
a

a<5
golabel

:Label1

Table 7: Simple example with label and golabel for iterations

When test is executed, it will show message box with numbers from 1 to 5.

Using golabel function execution of large alternative blocks can be managed. E.g. following logical statement:

If a>b Then

statement1

statement2

Else

statement3

statement4

End If

can be implemented in the following way:

Condition
Function
Variables
Parameters

a>b
golabel

:a>b

not a>b
golabel

:not a>b

:a>b
statement1

statement2

golabel

:finish

:not a>b
statement3

statement4

:finish

Table 8: Grouping of statements with logical conditions

Note. ":" (column) sign at the start of the label is used to distinct it from logical condition, and not to evaluate. Golabel function allows to use any string to be searched in Condition column, so it is possible to pass execution flow to rows containing logical statements also.

Golabel function searches for a cell with appropriate content starting from the first row. If labels are not unique, the first meet label is used. If appropriate label is not found function logs warning and execution flow goes to the next row.

 5 Test Execution

 5.1 Quick HowTo

Check that Data.xls file is closed. Then start QTP and open Batch test in TestsRoot folder. Then press Run, Temporary run results folder, and OK.

[image: image7.emf]
Fig. 6: Execution of Batch test in QTP

 5.2 Debugging of Test Execution

To will show/hide formed VBS statement in message boxes with before they execution, change global variable debug_on to true/false in Global worksheet.

Because in this framework the most part of test execution management is performed in Excel worksheet, there is no much to do in QTP tool. Inside QTP InvokeFunction action only changes which can be necessary is commenting/uncommenting On Error Resume Next statement. For more options in development process see chapter 7.1.

 5.3 Monitoring Test Execution Remotely

It is possible to monitor script execution remotely. To do that TestsRoot should be shared before.

 5.3.1 Sharing of TestsRoot Folder

Open TestRoot folder and open its properties. Choose Sharing and security:

[image: image8.emf]
Fig. 7: Opening of directory sharing properties

Then select Sharing and Share this folder, Click on Apply.

[image: image9.png]
Fig. 8: Sharing settings of selected directory

Click on Permissions and set change permissions for this folder, press Appply. Click on Permissions and set change permissions for this folder, press Apply,

[image: image10.emf]
Fig. 9: Shared folder security settings

Press OK, OK.

 5.3.2 Opening Shared TestsRoot Folder

Shared folder can be accessed from another computer using UNC name in form: \\hostname\foldername.

 5.3.3 Monitoring of Runlog with Tail for Win32

Installation of Tail for Win32 is in TestsRoot\Tools folder. To see progress of script execution, open run log which is stored in TestsRoot\Results folder. File name is determined by global variable run_label, which is initialized in Global worksheet in Data.xls file.

Open Tail, and connect to the network share and log file:

[image: image11.png]
Fig. 10: Execution log in Tail for Win32

 6 Runlog Report Generation

When runlog is created it can be used for report generation. Copy created plain (tab-delimited) content from runlog file to Microsoft Excel. Then run macro provided under ../Tools folder.

· For Microsoft Excel select Tools-Macro-Macros...- in Macro name type fill_colors-Run.

Will get colored runlog lines:

[image: image12.png]
Fig. 11: Colored runlog in MS Excel

 6.1 To prepare overview

For Microsoft Excel select:

Data-Filter-Auto Filter, then For column B choose Custom... Begins with-Finished:

[image: image13.png]
Fig. 12: Overview of runlog in MS Excel

 6.2 Installation of Excel Macros

Necessary macros should be installed in following way:

1. For Microsoft Excel Personal.xla file should be stored in 'C:/Documents and Settings/user_name/Application Data/Microsoft/Excel/XLSTART' folder, to start it always with Excel.

2. You can add button to execute fill_colors macro. Select Tools-Customize...-Commands-Macros. Drag Custom Button to toolbar. Press Close. Then click on created button enter macro name: fill_colors, press OK.

 7 Development Guidelines

 7.1 Implementation of New Function

As framework differs from approach proposed by Mercury, and QTP doesn't allow to debug external libraries, development of new functions is little bit tricky. The main idea is that all functions, when they are developed debugged, are declared inside Batch test InvokeFunctions action. As there are statements which must be at the most top in code, appropriate place in action is marked with code:

' Insert code for testing here

'--

'--

Uncomment Option Explicit statement to catch errors, and insert newly developed or copied code from Functions.vbs between the two lines.

As QTP begins to search functions inside action and only then in external library, there is no need to delete existing functions from Functions.vbs file. The same is true for declared variables.

[image: image14.emf]
Fig. 13: How the new custom function should be developed

Be sure that before recording of any new activity, right object identification settings are set. To check it select Tools-Object Identification...-Environment:

· .Net Windows Forms – swfWindow as mandatory properties has swfName and text.

· Standard Windows – Dialog – nativeclass and text,

· Standard Windows – Window – regexpwndclass.

Settings are applied by set_obj_id_settings function, which in turn is invoked by init and start functions. Look at implementation of this function, to see what properties are changed from default.

 7.2 Function naming convention

Currently utility functions are named with small characters and underscores (e.g. start, select_tab). Business Related functions starts with Upper characters. Sarting with domain to which thewy are related, and then functions which are performed (e.g. DealSearch, HelpTestSystem).

 7.3 Order of parameters, returned values for functions

As column sequence for functions invoked in InvokeFunctions sheet is in order: function, variables, parameters, the convenient sequence for function parameters is that parameters passed as reference (ByRef) are before parameters passed by value.

Therefore recommended declaration form for getters is get_property(ByRef property, .. other params). Returned value from function can be used for function status (e.g. cPASS if OK, cWARNING, or cFAIL for some errors).

 7.4 Utilities

 7.4.1 Object Repository Functions

QTP has extremely weak Object repository editor, but object repository file is binary, so there is no way to edit Object repository file outside QTP. Fortunately there is one awkward workaround – using object repository API. Theoretically it allows to do anything what normal editor is proposed to do, but because API is poorly documented it is not easy way.

Install QuickTest Plus utilities, and see RepositoryUtil.rtf.
Then open ObjectRepositoryUtils test in TestsRoot\Tools folder.

List of leared GUI objects in object repository (WL_STP.tsr) can be generated by GenerateObjectRepositoryList function in ObjectRepositoryUtils test.

 7.4.2 List of custom functions

List of implemented custom functions in TestsRoot\Tools\Functions.vbs can be generated by execution of generate_function_list.vbs script.

 7.4.3 Clean up script

Unnecessary *.bak and *.z files from framework folders can be removed by delete_files.vbs script.

 7.5 Other Ideas

It was tried to to use some kind of polymorphism in QTP for object handling, e.g. development of get/set_value function for different types of objects. As QTP in difference with WR doesn't allow to get object class, which is necessary to know appropriate method, there are only two possibilities:

· either code object type in its logical name using prefix,

· or try and error approach for setting value with On Error Resume Next statement inside function.

As it was not possible to implement object management by their logical name (at least, in easy way, see below), it was abandoned.

As this framework provides fully functional programming language in Excel sheet, it seems exciting to control by Excel worksheet any GUI operation, as it is done in SAFS framework.

Theoretically it is possible also using QTP, but additional work is needed.

Using QTP object repository in normal way, it doesn't allow to control, how it stores containment of GUI elements (full object classpath). However, object repository API allow to search for object by its logical name (actually it allows only to enumarate all child objects and then check their name), and theoretically it is possible to get object by logical name, but as it was tested, it was quite slow solution.

Another solution would be to tweak object repository using API, by moving all container objects (windows, frames) to the root. Then objects could be get in the two-steps way similar to the WinRunner. At first by selecting appropriate container object (analog for WR set_window function), and then its child elements can be selected using object logical name.

 8 Other Notes

See also other documentation in TestsRoot\Doc folder:

1. Notes.doc
2. Design.ppt
Excel file Data.xls

InvokeFunctions table manages test logic

Other tables contain test data

No need for QTP to edit

VBS skript file Functions.vbs

Implementation of business functions

QTP test Batch

InvokeFunctions action reads commands from Excel table and interprets them

GUI object repository

Data resource

External library

[image: image15.png][image: image16.png][image: image17.png]