LoadRunner Quick Howto

Table of Contents

 1. Short About
1

 2. Application Starting
1

 3. Work With Test editor
2

 3.1. Record Test Using Recorder
2

 3.2. Customizing Test
3

 3.3. Register Dynamic Data Into Parameter
4

 3.4. Register Transactions
5

 3.5. Split Code in Separate Actions
5

 3.6. Test Execution
6

 4. Work with Scenario Editor
8

 4.1. Create Scenario
8

 4.2. Scenario Execution
10

 5. Work with Results Analyzer
11

 5.1. Open Results
11

 5.2. Save Report
12

 6. Testing Scenarios
12

 7. Problem Solving
13

 7.1. Recorder doesn't work
13

 1. Short About

LoadRunner (LR) works as a proxy server catching data stream from client to server and back. LR should emulate all locally performed data calculations, which client does locally to prepare valid data stream to server. Therefore as more complicated client and/or test case is, as more data stream processing in LR code should be done. Therefore LR scripts should be kept as simple as possible, and the challenging task is to develop different test scenarios, how the same (dumb) LR scripts could be used for different roles.

For more details see LR reference guides:

· Mercury LoadRunner Controller User’s Guide

· Mercury LoadRunner Monitor Reference

· Mercury Virtual User Generator User’s Guide

· Mercury LoadRunner Analysis User’s Guide

and following links:

· http://www.wilsonmar.com/1loadrun.htm

· http://www.wilsonmar.com/1lrscript.htm

· http://www.wilsonmar.com/perftest.htm

· http://www.wilsonmar.com/lr_framework.htm

 2. Application Starting

Load runner consists of three main applications (Name in Help-About, filename):

· Test editor (which is named as Virtual User Generator, vugen.exe)

· Scenario editor (LoadRunner Controller, wlrun.exe).

· Results Analyzer (LoadRunner Analysis, analysisui.exe)

When LoadRunner is started using Start menu (Start-Programs-Mercury LoadRunner-LoadRunner), the executable LRLauncherApp.exe is started, which shows following screen:

[image: image1.png]MERCURY
LoadRunner

Load Testing Disgnostics |

GONFIGURATION

Tuning | What's New

@ Create/Edit Scripts
@ Run Load Tests
@ Analyze Load Tests

@ Learn More about Load Testing

Load Testing prevents costly and painful performance
problems in production by detecting bottlenecks before
system or upgrade s deployed. By creating production
workloads on IT systems in QA or staging, you can
measure the performance of critical business processes
under load and pinpoint bottlenecks for rapid resolution.
Mercury's LoadRunner provides comprehensive support
for the most common protocols and technologies-including
ERP/CRM, Web, J2EE/.NET, XML, .NET, wireless and
streaming media-allowing IT groups to use a single.
product for load and performance testing of all enterprise.
‘applications. Implementing an effective load testing
process with Mercury's LoadRunner helps ensure that new
or upgraded applications meet service level objectives.
and deploy to production with no performance surprises.

Clicking on Create/Edit Script link will open vugen, Run Load Tests – wlrun, but Analyze Load Tests – analysisue accordingly. So, actually this screen is nothing than task-oriented wrapper. To open necessary application more quickly, go C:\Program Files\Mercury\LoadRunner\bin and make shortcuts from mentioned executables to your desktop:

[image: image2.emf]
 3. Work With Test editor

 3.1. Record Test Using Recorder

To not try and error too many times with recorder, you have to be developed execution scenario before recording. Our scenario will be following:

1. Open IE and go to Google site,

2. Entering search criteria,

3. Click on the first provided link,

4. Checking that site is opened successfully,

5. Go back to Google start page, and close IE.

Steps from 2 to 4 can be performed several times (iterations).

LoadRunner test is set of scripts written in C language, which is extended with API libraries for testing. Each test when is compiled, can be executed simultaneously in several instances in such manner acting as "virtual user". Therefore tests are also named as virtual users. To create new test, select File-New...-choose test type (Web HTTP/HTML in our case)-OK, and you can start recording.

Enter parameters for test recording:

[image: image3.png]Recording
Applation ype
Progiam to record

URL Address

Working diectory

Becordinto Acton: [T ~| New.

[Record the application startup

Gpiions.

Intemet Appiications - 9

[Microsaft rtemet Explorer =
it 7w qoogie.com/ |

[CAProgram Flestintemet Explorer =

==

and record the scenario. If Windows open security alert screen, press Unblock button:

[image: image4.png]*: Windows Security Alert

\J

Do you want o keep blocking this program?

] Neme: Intemet Explorer
=y
6 publsher: Microsot Comoration

Keep Blocking Unblock sk Ve Later

Windows Frewall has locked this program from accepting connections fromthe
ntemet ora network. you recogrize the program or st the publisher, you can
unblock 1

When recording is finished, LR will generate script code, accompanied with snapshots and data stream samples. Code can be viewed by pressing Script, button, but snapshots with data stream sample, by pressing Tree button in LR toolbar:

[image: image5.emf]
According to the test type (Web test in out case), LR has created default header file (globals.h) which adds all necessary includes to LR Web APIs.

When script is recorded, all unnecessary codelines which doesn't affect business – such as cookie related things, external resources and links, optional values for data submissions using GET/POST methods, etc. should be deleted. Only URL changes and parameters, which are necessary to perform correct navigation and pass validation of submitted data should be left. Than shorter will be code, than more robust it will be.

 3.2. Customizing Test

When script code is cleaned up, we need to add some intelligence to this script. So, we will add test parameters, transactions and status checks.

To edit test parameters, go Vuser-Parameter List. Values for parameters can be stored in file, or initialized in runtime using several functions. By default LR creates separate file for each new parameter, but we'll create one file for several ones. Edit data file in notepad, or in LR editor. Add url, search and button parameters, which are linked to the column in tab delimited file. As a result parameter list looks following:

[image: image6.png]“® bulten
® search
® ul

New

Delete

Ferameter ype: [Fie

Flepat: s

Adicam.. || AddFom._| Dekteolimn. | esion. |

ul search

button | Comments

[Fitc:7Zumwon googte corlvikipediarloadrunmer Google+Search

Change the

Editwith Notepad.. | Data Wizard

Fie fomat

- Select colum

© Bynumber: |1

Column delmter:

 Byname: [

Fist data ne:

Ll Lk

Selectnestiow: [Sequential

Update valie or: [nce

When out of vales; [Eontine wit st vahie

-Allcateuser valies nthe Cantiolr
& Automatical alosste block siz=

€ Alcate. values foreach e

Then go to code and replace necessary strings with parameters. You can can do this using pop-up menu:

[image: image7.emf]
or manually. The result should be, that all necessary strings are replaced with {parameter_name}.

 3.3. Register Dynamic Data Into Parameter

To get the first link ir search results screen, another runtime parameter should be initialized using LR web_reg_save_param function. This function sets parameter value which is between two delimiters in server response.

web_reg_save_param("link",

// register parameter before getting server response

"LB=<a href=\"" ,

// set text boundaries, in which value should be searched

"RB=\" class=l",

"Ord=1", "NotFound=ERROR", "Search=Body", LAST);

This function should be set before getting server response. Server response snapshot can be seenby selecting Tree button, then select response HTML, then click on Server Response button:

[image: image8.emf]
Later in code registered parameter can be used similarly to all other parameters using reference {link}.

To check, that page to selected link is opened successfully, we'll check the server response (HTTP/1.0 200 OK) in HTTP header:

web_reg_save_param("status",
// register parameter before gettins serevr response

"LB=HTTP" ,

// set text boundaries, in which value should be seached

"RB=OK",

"Ord=1", "NotFound=ERROR", "Search=Headers", LAST);

The only difference between {status}, from the {link} parameter is that, text is searched in HTTP header.

 3.4. Register Transactions

To check execution of separate steps, we need to add start and end points of transactions, for which the pass/fail statuses will be checked as well as response times. Using hardcoded names it can be inserted using menu Insert-Start Transaction/End Transaction. But we will use another approach, where transaction name will be set using runtime data.

To be able to generate transaction name dynamically, variable msg is declared in globals.h file:

char *msg;
// define "string" (actually pointer to array) variable for transaction names

Then it is initialized using different string functions.

msg=lr_eval_string("Search for {search}");
// variable msg is defined in globals.h

lr_start_transaction(msg);

// log transaction start

 3.5. Split Code in Separate Actions

Using wizard code was generated in one action which was selected in wizard properties screen. According to our scenario steps, we will split it in several actions. That part, which does the 1. step, will go to vuser_init action, steps from 2 to 5 are going to Action and AnotherAction, but the last step (6), to the vuser_end action. Action names can be changed, but the execution order is managed by selection of Vuser- Run-Time Settings...-General-Run Logic:

[image: image9.png]General

Pacing
Log
Think Time
Addiional atibutes
Miscellaneaus
Network
Speed Simulstion
Browser
Browser Emation
Internet Protocel
Prasy
Preferences
Dowrlaad Fiters
ConteriCheck.

~Generak: Run Logic-

ek
3 Number of Iterations: =
=9 mit et Ackion
@ vuser_init
1% Run e Blosk.
@ Action
@ AnotherAction Deletz
s e
® vuser_end LT
fove Down
Propeties,
b
A ——
o I N

Now we should be able to run test, the example of which is saved as as Google_test.

 3.6. Test Execution

To see, how it works, select also Tools-General Options...-Display:

[image: image10.png]Parameterizaton | Replay | Envirorment Dispiy | Corslation

IV Bhow browser durng repiayt
¥ Auto amange window

Test et
[T —

You can also watch server response in output (debug) window. Select Vuser-Run time settings-General-Log-Enable Logging, Extended log, and check on all items:

[image: image11.png]General
RunLogic
Pacing
Log
Think Time
Addiional atibutes
Miscellaneaus
Network
Speed Simulstion
Browser
Browser Emation
Internet Protocel
Prasy
Preferences
Dowrlaad Fiters
ConteriCheck.

-Benerak Log

IV Enable logging

Log options

 Always send messages

Log messages at the detallevel of
© Stndardlog
& Exendedlog

¥ Parameter substution

¥ Data retumed by server
¥ fidiancedaca

Data Rietumed by Server
Logs allnformalion sent from the server o the Vuser

% " Send messages anl when anemor oceurs Advarced

et [0]

Cancel

Help

Then run the script (F5). It will be compiled automatically,and then executed. Note, that we have switched the most aggressive debugging possibilities. We can see animation, and full server responses in debug window:

[image: image12.emf]
Set breakpoints (F9), and go step-by-step (F10), to see what happens, if something doesn't work. When Test is finished, check, that all Advanced toolbar ar visible (View-Toolbars-Advanced), and open test runlog with this button: [image: image13.emf]. All actions should be successful:

[image: image14.png]=+ [Goole_test Iteration 1 (Row 0),
& & Action Summary
5 Service: Reg Save Para
$3 url: search
& v {§ Anotheraction Summary
2 Service: Reg Save Para
&3 urt: SearchLink
& v vuser_end summary
83 url: Goole

Goole_test Results Summary

Test: Goole_test
Run started: 4/10/2007 - 17:11:59
Run ended: 4/10/2007 - 17:12:46

Iteration #

Results

Passed

Times

Ready [[[4

Now we are ready to create some scenario.

 4. Work with Scenario Editor

 4.1. Create Scenario

Open wlrun in the way you like. Then select File-New, and ad Google_test as script in scenario:

[image: image15.png]W o

- Select Scenaia Type

& Manual Scenaio

Maniage yourload test by specifing the number ofvitual users to un

I~ Use the Percentags Mods to disibut the Visers among the scipts

 GoalDriented Scenaio

Allw LoadRunmer Conirolr to reae a scenaria based on the gaals you speciy

[~ Select the scip(s) you would ke to use in your scenao

Avalble Scipts
& Goole_test

& kite18_killer_u2

& kite18_kiler_u3

& Noname

& SP545_WS_DAV_V3
& SP_Logon

<0 1 nnan 1

I |

iE

Qualy Certer.

Scipts in Scenaiio

T~ Show at startup.

=

Help

In Design view (tab):

[image: image16.png]P =

File View Scenario Results Diagnostics Tools Help
EEEIFIET

Scenario Schedule

Schedule Name: [Defaut Scheduie 3

Mode: Scenario Scheduling

Load Preview

Scenario Duration: Run for 000:01:00 (hhh:mm:ss)

Load Behavior: Start 2 Vusers every 00:00:10 (hh:mm:ss)

0000:10 00:00:20 00:00:30 00:00:40 000050 0001

© Edit Schede. Bt

Scipt Path Queniiy
\Goole_test 2

Scenario Groups

T] Grow Nome
|- oottt

Load Gengralors

P Stat Scenaiio

lacakhost

g Generatos

O vusers

1 AddGroup.

1% Remove Group

Detais.

B Vewseint

Design Run Diagnostics for J2EE/NET

[[[6 AuoCobteResits |

1. To make your scenarios more portable, change script path from full to relative, starting with ./
Note, if you need to run similar scripts with different data sets, create copy of them and change parameter data file accordingly. Then add all scripts into scenario.

2. Set quantity of simultaneous "users" in quantity column to 2.

3. Press Edit Schedule..., and set options how scenario will run (Ramp Up both users after 10, seconds, and set Duration for 1 minute.

4. Press Runtime Settings, and remove all necessary logging, otherwise you'll get huge amount of data in Results folder. Note, script run logic settings is overridden by scenario schedule settings.

5. Select Results-Results Settings..., and set place where results will be stored (Results folder).

6. Because we were not lazy created transaction logging in code, we don't need to treat actions as transactions. Therefore select Run-time Settings-General-Miscellaneous, and check off Define each action as transaction.

[image: image17.png]General
RunLogic
Pacing
Log
Think Time
Addiional atibutes
Miscellaneaus
Network.
Speed Simulstion
Browser
Browser Emation
Internet Protocel
Prasy
Preferences
Dowrlaad Fiters
ConteriCheck.

-Beneral Miscelaneous:

Ertor Handing
I™ Continue on eror
I~ Eail apen transastions on _eror_message

™ Generate snapshot on ertor

Mullthreacing
&ﬁ € RunVuser a5 a rocess
X% & RunVuser 3 hread

Automatic Transactons

| I D e i |
)1 [~ Defne sachsop o a ansactin

Define each action as a ransaction
Treat each acton i the scipt as a transaction fo performarnce messurererts.

o

Help

 4.2. Scenario Execution

Warning! The sample script and scenario is only for educational purposes. Don't try to test Google site for load and don't increase schedule time or number of concurrent users. You will slow down your link to external world and, as Google have protection for denial of service attacks, you'll probably banned out.

In Run view press Start Scenario button, and look how it works:

[image: image18.png]Scenario Status

> Satscersis || pumingVusess 2
s Elapsed Time: 00005 (himmss)
X His/Secand 3111 flast B0)
Passed Transastons F
W Vusers ©
1| Faied Transastons] aQ
2 RunsStopVusers.| | g, T oq
“Available Graphs | e T Tesreoasommre—
5 Funtime Graphs g2 24
Runring Vusers E / 5 2 fessaip amrressssatussnd™*
User Defned Data Paints 3 ¢
ErorStaitics 00:00:00 000010 00:0020 000030 000040 $00000 000010 000020 000030 00:00:40
users with Enors ‘Elapsed Time -4 ‘Elapsed Time (Hour:Min:Sec)
= Transacton Graphs Hts per Second - whole scenario Windows Resources - Last 60 sec
s rr—
Trans/Sec Passed) £
Trans/Ses (Faikd Stopped) i [
Total Trans/Sec Passed) TohT mhehr (Rt GRonr MhonT
e Resource Graphs Elpsed Time (Houriin:Sec) Elpsed Time (Houriin:Sec)
[Cobr__[cal [Transaction Mas i B s Last
C_ Search for wkipedaoadier 3220 078 iew odm 2mer
— Qpen it/ google.com 2285 22 222 0004 22w
— 010 hp://enwkipedia org/wiki/LoadRurmer 291 amm ase 01 4079
Design Run Diagnostics for JOEE/NET |

5 A ColeteFesls |,

Note, pressing Stop once will stop running user when current iteration will be finished. Pressing Stop again will force to stop execution at the end of current action.

 5. Work with Results Analyzer

 5.1. Open Results

When scenario is finished, Select Results-Analyse Results. This will open analysisui with newly created runlog. All runtime data are stored in the Results Settings folder, and reports are only views with different aggregation level on these data.

 5.2. Save Report

[image: image19.png]§ LoadRunn

Fle Edt View Graph Reports Lools belp

\naly ion.ra

02388 | o |[¥o =%
[G8 somrite | Surmay Reprt | FunningVusers | Fits per Second | Thioughpu | Trnsacton Surnary | Average Trarsacton Resparse Tive |

<New Graph>

Runring Vusers
Hisper Second

Thoughput
Transaction Surmay

Average Transaction

Analysis Summary

Period: 10/04/2007 17:44:31 - 10/04/2007 17:45:35

Scenario Name: Ci\Temp\LR_Seripts\Goola_test_scanario.lrs
Results in Session: c:\Temp\LR_Scripts|Rasults|2007-04-10\2007-04-10.Ir
Duration: 1 minute and 4 seconds.

Statistics Summary

Maximum Running Vuser: 2
Total Throughput (bytes): 2,425,708
Average Throughput (bytes/second): 37,334
Total Hits: 212

3262

Average Hits per Second: View HTTP Responses Summary

Transaction Summary

n=: Total Passad: 44 Total Failad: 0 Total Stoppad: 0 Average Response Time

- - Sta
Transaction Name. Minimum Average Maximum ation 00 Percent Pass Fail Stop
Go back to httou//unnracodle com 2243 2262 2281 0.015 2281 2 ° o
Goto

bito://en.vikipedia ora/uiki/Loadrunner 3:4° | A S5 @z = 0 0
Open httou//umegooale.com 2238 2242 2245 0.004 2245 2 o o
Sesrch for vikipedia losdrunner o788 1985 3267 o528 23 20 o o
HTTP Responses Summary

TP Responses Total Per zecond

HTTe 200 212 3262

Legend | Alets | Graph Details

User Notes | Graph Data | Raw Data

=

Add necessary reports and save reports project together with they data:

[image: image20.png]File pame:.

Saveastpe:

Select Reports-HTML Report.../Microsoft Word Report... to export to report to HTML or Word, which can be used as stub for detailed document.

Note, that LR results alone usually aren't enough to get full picture of application performance, stability, robustness, etc. Analysis of LR results should be companied with application server logs, which shows performed operations, exceptions, used processor time, virtual memory, threads, etc.

 6. Testing Scenarios

The same test script can be used for different scenarios, which will expose different server features. Some of scenarios tend to be positive (application server should keep working), other tends to be negative (application scenario is finished, when application server dies). The minimum set of scenarios, which shows different kinds of application robustness are following:

 1. Performance test. In this test application server is tested, how it can handle increasing load. This test will show places which slows down faster, and should be improved on the first hand. The same tests are run with increasing number of concurrent users. The significant points, which should be checked are:

 a) how long response time practically doesn't change (i.e. bottlenecks are clients itself, not network or application server).

 b) how long response time increases linearly to the number of concurrent users,

 c) when response times increases faster than linearly to the number of concurrent users,

 d) when server is unusable slow or crashes.

 2. Load test. In this test server is loaded with constant load of concurrent users. Tests should potentially run forever. Such test will show how application server handle load in circumstances near to the production. Server should be checked for virtual memory, processor time, threads, and other resources, and they shouldn't increase in time. If such happens, then server will/would slowdown/crash due to limited amount of leaking resources. Load test can be run in different levels of "user kindness":

 a) concurrent user can add/search/modify/delete different resources in his own "sandbox", and not disturbing each other. Such test usually is close to production.

 b) concurrent users can add/search/modify/delete the same resources (race for them). Then with high probability conflicts will appear, which application server should handle in proper manner. Such test will show how gently application server can handle different exceptions.

When particular bottleneck or poorly handled place is found, then application can be tested with more specialized tests and scenarios, which exposes better this particular area.

 7. Problem Solving

 7.1. Recorder doesn't work

Propably the process which intercepts data stream from client to server doesn't work. LoadRunnerAggent process usually is started automatically (in the system tray appears icon: [image: image21.emf]), or can be started manually by Start-Programs-Mercury LoadRunner- LoadRunnerAggent Process.

